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Abstract. Given a function on Rn with many multiple local minima we approximate it from

below, via concave minimization, with a piecewise-linear convex function by using sample
points from the given function. The piecewise-linear function is then minimized using a single
linear program to obtain an approximation to the global minimum of the original function.

Successive shrinking of the original search region to which this procedure is applied leads to
fairly accurate estimates, within 0.57%, of the global minima of synthetic nonconvex piece-
wise-quadratic functions for which the global minima are known exactly.

Key words: Global minimization, Piecewise-linear underestimation, Concave minimization,

Linear programming

1. Introduction

Unconstrained minimization of nonconvex functions with multiple minima
plays a key role in computational biology problems such as protein dock-
ing [6]. Although the problem is NP-hard, computational approaches such
as convex global underestimation (CGU) [1, 7, 9] have been quite promis-
ing. In these methods, the nonconvex function is successively bounded
below by a strictly convex quadratic function whose minimum gives
improved estimates of the global minimum of the nonconvex function. In
the present approach we use instead a piecewise-linear approximation to
underestimate the nonconvex function instead of a strictly convex qua-
dratic function. Our piecewise-linear approximation turns out to be auto-
matically convex, and hence it is very easy to find its global minimum.
Initially, both the present approach and that of [9] require the minimiza-
tion of a concave function on a polyhedral set, in order to obtain an
underestimate to the nonconvex function to be minimized. However,
enforcing positive definiteness on the matrix defining a quadratic underesti-
mate in [9] changes the polyhedral constraints to convex constraints. In
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contrast, in the present approach, polyhedrality of the constraints remains
unaltered and plays a crucial role in proving finite termination of our algo-
rithm. Related results on piecewise convex maximization appear in [2].
We outline the contents of the paper now. In Section 2 we formulate our

piecewise-linear underestimation as a concave minimization problem, or
more specifically as the minimization of a piecewise-linear concave function
on a polyhedral set. We also establish the existence of a vertex solution to
the problem. In Section 3 we state our successive linearization algorithm
(SLA) and establish its termination in a finite number of steps at a vertex
satisfying a necessary optimality condition. In Section 4 we describe the
generation of our synthetic nonconvex piecewise-quadratic function with
multiple local minima for which the global minimum solution is known. In
Section 5 we give results for numerical testing of our algorithm on various
sized nonconvex synthetic test problems including a model for a protein
docking problem. In all instances tested, the global minimum value was
attained within 0.57%. Section 6 concludes the paper.
A word about our notation and background material. All vectors will be

column vectors unless transposed to a row vector by a prime superscript 0.
The scalar product of two vectors x and y in the n-dimensional real space
Rn will be denoted by x0y. For x 2 Rn and p 2 ½1;1Þ, the norm kxkp will

denote the p-norm:
Pn

i¼ 1

jxijp
� �1

p

and kxk1 will denote max
1OiOn jxij

. For

x 2 Rn, jxji ¼ jxij, i ¼ 1; . . . ; n. For an m� n matrix A, Ai will denote the
ith row of A, A�j will denote the jth column of A and Aij will denote the
element in row i and column j. The identity matrix in a real space of arbi-
trary dimension will be denoted by I, while a column vector of ones of
arbitrary dimension will be denoted by e. Finally, as a matter of terminol-
ogy, we note that our underestimating function p of (4) is, strictly speak-
ing, a piecewise-affine function. However, it is standard practice in
mathematical programming to refer to an affine function such as axþ b,
where a and b are constants, as a linear function instead of an affine func-
tion. We have followed this practice here.

2. Piecewise-Linear Underestimation via Successive Linear Approximation

The problem we are interested in is to find the global minimum of a func-
tion f : Rn �! R, given m function evaluations of fðxÞ, that is:

yk ¼ fðxkÞ; k ¼ 1; . . . ;m: ð1Þ
In [9] a strictly convex quadratic underestimate:

qða; c;H;xÞ ¼ aþ c0xþ 1

2
x0Hx; H symmetric positive definite; ð2Þ
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is first obtained by solving the mathematical program:

min
a;c;H

Xm

k¼ 1

ðyk � qða; c;H; xkÞÞ ð3Þ

s:t: qða; c;H; xkÞOyk; k ¼ 1; . . . ;m;

H symmetric positive definite;

where a 2 R, c 2 Rn and H 2 Rn�n, and then minimizing qða; c;H; xÞ over
x 2 Rn. The nonlinear positive definiteness constraint in (3) complicates
this otherwise linear formulation. Furthermore a single strongly convex
quadratic function, such as qða; c;H;xÞ, might not closely underestimate
fðxÞ. We propose here instead the following piecewise-linear function:

pða; c;A; b; xÞ ¼ aþ c0xþ kAxþ bk1; ð4Þ
where a 2 R, c 2 Rn, A 2 R‘�n and b 2 R‘, where ‘ is the number of linear
functions generating our piecewise-linear underestimation. We note imme-
diately that pða; c;A; b; xÞ is convex and piecewise-linear in x for fixed
ða; c;A; bÞ and similarly it is convex and piecewise-linear in ða; c;A; bÞ for
fixed x. Our approximation problem for an underestimator of fðxÞ is then
the following concave minimization problem.

min
a;c;A;b

Xm

k¼ 1

ðyk � pða; c;A; b; xkÞÞ

s:t: pða; c;A; b;xkÞO yk; k ¼ 1; . . . ;m:

ð5Þ

Note that unlike the mathematical program (3), there are absolutely no
constraints whatsoever on the matrix A. By using nonlinear perturbation
theory of linear programs [5], the minimization problem (5) can be rewrit-
ten as the following piecewise-linear concave minimization on a polyhedral
set:

min
a;c;A;b;sk

Xm

k¼ 1

ðyk � ðaþ c0xk þ e0jAxk þ bjÞ þ �e0skÞ

s:t: aþ c0xk þ e0sk O yk; k ¼ 1; . . . ;m

� skOAxk þ bO sk; k ¼ 1; . . . ;m;

ð6Þ

where � 2 ð0; �� � for some �� > 0, and sk 2 R‘, k ¼ 1; . . . ;m. A principal
advantage of this formulation is that a global solution exists at a vertex of
the nonempty feasible region as follows.

PROPOSITION 1 (Existence of a Vertex Solution). Under the assumption that

the feasible region of ð6Þ has no straight lines that go to infinity in both directions, a
vertex solution to the minimization problem exists.
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Proof. This proposition follows directly from [8, Corollary 32.3.4] by not-
ing that the objective function is concave and bounded below on the non-
empty polyhedral feasible region. To show that the feasible region is
nonempty, take c ¼ 0, A ¼ 0, b ¼ 0, sk ¼ 0, k ¼ 1; . . . ;m and a ¼
min

k¼ 1;...;m
yk. To show that the objective function is bounded below by zero,

note that from the last set of constraints of (6), we have that for
k ¼ 1; . . . ;m:

e0sk P e0jAxk þ bj; sk P 0; ð7Þ
and hence:

yk � ðaþ c0xk þ e0jAxk þ bjÞ þ �e0skPyk � ðaþ c0xk þ e0skÞ þ �e0skP0:

ð8Þ
(

REMARK 2. The assumption that the feasible region does not contain straight

lines that go to infinity in both directions is easily implemented by making all the

variables of the problem nonnegative. This is achieved by redefining the variables

of the problem as the difference of new nonnegative variables and a single

nonnegative scalar variable. This increases the dimensionality of the problem by

one. However, in actual computational applications, this transformation is not

needed in order that our successive linear approximation algorithm terminate in

a finite number of steps.

We shall solve the problem (6) by a successive linearization algorithm
described in the next section. Once that is done, the piecewise-linear func-
tion (4) can be minimized as a linear program as follows:

min
x;t

aþ c0xþ e0t

s:t: � tOAxþ bOt;

a1OxOa2;

ð9Þ

where a1, a2 are usually known bounds on the variables of the problem.
We are ready now to turn to our algorithm and establish its finite termi-

nation.

3. The Finite Successive Linear Approximation Algorithm (SLA)

We shall use the stepless generalization [4] of the Frank–Wolfe algorithm
[3] for minimizing nondifferentiable concave functions on polyhedral sets.
Finite termination of the generalized Frank–Wolfe algorithm at a vertex
satisfying the minimum principle necessary optimality condition is given in
[4, Theorem 3]. To state our SLA we need to evaluate the subgradient of
the objective function of (6), which we do now. We shall collectively repre-
sent the optimization variables of (6) by z 2 R1þnþ‘nþ‘þ‘m as follows:
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z ¼

a
c

A0i; i ¼ 1; . . . ; ‘
b

sk; k ¼ 1; . . . ;m

2

6
6
6
6
4

3

7
7
7
7
5

ð10Þ

If we denote the objective function of (6) by hðzÞ and the feasible region of
(6) by Z, then (6) can be written as:

min
z2Z

hðzÞ: ð11Þ

The subgradient of hðzÞ with respect to z as defined in (10), is given by:

ohðzÞ ¼
Xm

k¼1
�

1
xk

ojAix
k þ bijxk; i ¼ 1; . . . ; ‘

ojAix
k þ bij; i ¼ 1; . . . ; ‘
� 1

m �e

2

6
6
6
6
4

3

7
7
7
7
5
: ð12Þ

where e 2 R‘m and, for i ¼ 1; . . . ; ‘, k ¼ 1; . . . ;m:

ojAix
k þ bij ¼

1 if Aix
k þ bi > 0

2 ½�1; 1� if Aix
k þ bi ¼ 0

�1 if Aix
k þ bi < 0

2

4

3

5: ð13Þ

We are ready now to state our algorithm.

ALGORITHM 1 (Successive Linearization Algorithm (SLA)). Start with a

random z0 2 R1þnþ‘nþ‘þ‘m. Having zt determine ztþ1 as a vertex solution of the

linear program:

min
z2Z

ohðztÞ0ðz� ztÞ: ð14Þ

Stop when ohðztÞ0ðztþ1 � ztÞ ¼ 0.

This algorithm terminates in a finite number of steps as follows.

PROPOSITION 2 (Finite Termination of SLA). Under the assumption that the

feasible region Z of ð6Þ does not contain lines going to infinity in both directions, the
SLA generates a finite sequence of feasible vertices fz1; z2; . . . ; z�tg of Z of strictly

decreasing objective function values: fhðz1Þ; hðz2Þ; . . . ; hðz�tÞg, such that hðz�tÞ sat-
isfies the minimum principle necessary optimality condition:

ohðz�tÞ0ðz� z
�tÞP0; 8 z 2 Z: ð15Þ

Proof. The proof is a direct consequence of [4, Theorem 3]. (

GLOBAL MINIMIZATION VIA PIECEWISE-LINEAR UNDERESTIMATION 5



Once ða; c;A; bÞ are determined by the SLA Algorithm 1, an estimate of
the global minimum solution of fðxÞ is determined by solving the linear
program (9).
We turn now to the task of generating synthetic examples that mimic

the nonconvexity of computational biology minimization problems.

4. The Synthetic Nonconvex Piecewise-Quadratic Function

We will generate now a piecewise-quadratic nonconvex function as follows:
yðxÞ ¼ min

j2f1;...;rg
hjðxÞ; ð16Þ

where hjðxÞ, j ¼ 1; . . . ; r are arbitrary strictly convex quadratic functions,
such as:

hjðxÞ ¼ b j þ d j0xþ 1

2
x0ð0:5IþMj0MjÞx; j ¼ 1; . . . ; r; ð17Þ

Here, b j 2 R, d j 2 Rn and Mj 2 Rn�n are randomly chosen.
An interesting feature of the piecewise-quadratic function yðxÞ generated

as described above, is that its exact global minimum solution can be com-
puted as follows.

PROPOSITION 3 (Exact Global Minimum Solution of (16) and (17)). An

exact global minimum of ð16Þ and ð17Þ is given by:

min
j2f1;...;rg

min
x2Rn

hjðxÞ: ð18Þ

More specifically,

min
x2Rn

yðxÞ ¼ min
j2f1;...;rg

hjðxjÞ; ð19Þ

where:

x j ¼ �ð0:5IþMj0MjÞ�1d j; j ¼ 1; . . . ; r: ð20Þ
Proof. The point x

�j
such that:

h�jðx
�jÞ ¼ min

j2f1;...;rg
hjðx jÞ; ð21Þ

is the desired global minimum solution of (16) and (17), because
ðx�j
; h�jðx

�jÞÞ lies on the function yðxÞ of (16) and no other point on yðxÞ has
a lower value. (
An example of a piecewise-quadratic function in R2, generated by (16)

and made up of five pieces, that is r ¼ 5, is depicted in Figure 1. Figure 1
also shows the exact global minimum computed using Proposition 1
above together with an approximate solution computed by the SLA
Algorithm 1.
We turn now to our numerical implementation.
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5. Numerical Testing

We tested the SLA Algorithm 1 on six nonconvex piecewise-quadratic
functions as defined by (16) as well as on a synthetic protein docking
(SPD) problem generated from real docking data [6, 7]. For the SPD prob-
lem we used the model (16), where each hjðxÞ is a strictly convex quadratic
function with a pre-determined minimum solution corresponding to local
minima of the docking problem energy function. The dimensionality of the
spaces in which the test functions were defined varied between one and six.
The protein docking problem energy function [6] is defined in R6.
For each application of the SLA Algorithm 1, we generated a grid of 3n

points spanning the search region using three values from each dimension
of Rn. In addition, for each application of SLA, except the first, we
included the piecewise-linear minimum solution �x of the previous applica-
tion as well as the grid point of the previous application of SLA that
resulted in the lowest function value, x̂, thus generating a total of 3n þ 2
points. Each application of the SLA Algorithm 1 results in a piecewise-lin-
ear underestimator to the function values at the points in the grid, which is
then minimized by the linear program (9) to find an approximate minimum
of fðxÞ.
In implementing SLA Algorithm 1 we utilized the stopping criterion:

ohðztÞ0ðztþ1 � ztÞ < tol for some tol > 0, instead of ohðztÞ0ðztþ1 � ztÞ ¼ 0.

Figure 1. A 5-piece piecewise-quadratic function yðxÞ on R2 defined by (16) and showing the

true minimum and the computed minimum by our SLA Algorithm 1.
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The parameter tol varied from 1e-1 to 1e-10 in our test cases. Also, we
found the following initialization procedure helpful in implementing the
SLA Algorithm 1 for solving (6). We chose as initial guesses: a ¼ 0, c ¼ 0,
while for each i, i ¼ 1; . . . ; ‘, Ai, bi, were chosen so as the plane Aixþ bi
interpolated nþ 1 points randomly chosen from the search grid of 3n or
3n þ 2 points, and s ki ¼ jAix

k þ bij, k ¼ 1; . . . ;m. This resulted in better
solutions than a strictly random initialization of a; c;A; b; s1; . . . ; sm. Also,
it was found that taking ‘, the number of the linear pieces of the piece-
wise-linear underestimator (4), to be 3n , gave a fairly accurate underesti-
mator.
Once �x was obtained as a solution to (9), we refined the search region.

When �x was strictly interior to the search region, we re-centered the search
region around the mean of �x and x̂, as defined above, and decreased the
size of each dimension of the search region by a specified refinement rate.
When �x was not strictly interior to the search region, we shifted the search
region in the direction of �x for each j, j ¼ 1; . . . ; n where �xj ¼ a1j or �xj ¼ a2j .
In addition, if the selected refinement resulted in �x or x̂ not being in the
new search region, we uniformly expanded the region to include both
points.
We continued this process until the change in the 1-norm distance

between successive �x iterates was less than a specified tolerance. The
approximate minimum value of the test function fðxÞ was calculated as
aþ c0�xþ kA�xþ bk1.

Table 1. Numerical test results on six synthetic test problems and the synthetic protein docking (SPD)

problem

n Synthetic problems SPD

‘ ¼ 3n 1 2 3 4 5 6 6

m 3 6 9 12 15 18 18

3 9 27 81 243 729 729

Refinement rate 0.5 0.5 0.5 0.5 0.25 0.25 0.5

Iterate tolerance 0.1 0.1 0.1 0.1 0.5 0.5 0.1

SLA tolerance tol 1e-10 1e-10 1e-10 1e-5 1e-1 1e-1 1e-2

e 1e-10 1e-10 1e-10 1e-10 1e-5 1e-5 1e-5

True min )1708.1 )1499.9 )3264.7 )705.0 )7351.0 )11375.6 )42.7
Computed min )1708.1 )1506.6 )3265.7 )705.0 )7392.5 )11422.9 )42.7
Error in min 0.0 )6.7 )1.0 0.0 )41.5 )47.3 0.0

%Error in min 0.000% )0.446% )0.031% 0.005% )0.565% )0.416% 0.014%

Error in soln (1)norm) 0.002 0.110 0.177 0.114 0.818 1.208 0.062

%Error in soln 0.003% 0.091% 0.110% 0.057% 0.341% 0.431% 0.083%

No. refinements 25 39 54 31 33 171 26

Time (s) 1.4 12.7 106.4 1032.1 387.3 16045.1 5846.9

Time per refinement 0.1 0.3 1.9 33.1 11.5 93.2 224.4

No. LPs per refinement 2.1 3.4 9.7 11.5 16.5 11.7 15.0

Note relative errors in minimum values are less than 0.57% and 1-norm relative errors in solution points

are less than 0.44%.
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Our computations were performed on machines utilizing an 800Mhz
Pentium III processor and 256MB of memory running on Redhat Linux
7.2, with MATLAB 6.5 installed. The results are presented in Table 1.

6. Conclusion

We have proposed a method for finding an accurate estimate of the global
minimum of a nonconvex function by underestimating the function by a
piecewise-linear convex function and then finding the global minimum of
the underestimator. The method gives accurate estimates of the global min-
ima for a class of synthetic nonconvex piecewise-quadratic functions that
closely model protein docking problems. An interesting problem for future
consideration is that of approximating nonconvex protein docking energy
functions by our synthetic piecewise-quadratic function for which the pres-
ent approach provides an accurate estimate of the global minimum.
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